Erweiterung der Dynamic Interaction Theory (DIT) zu ADIT

Pardip Kumar 2025

Erweiterung der Dynamic Interaction Theory (DIT) zu ADIT

Die Erweiterung der *Dynamic Interaction Theory* (DIT) zu ADIT geschieht durch die Integration neuer mathematischer, physikalischer und systemdynamischer Konzepte. Ziel ist es, die Beschränkungen von DIT zu überwinden und eine universellere Beschreibung komplexer Systeme zu ermöglichen.

1. Limitierungen von DIT

DIT ist ein nützliches Werkzeug, jedoch durch folgende Einschränkungen begrenzt:

- Linearität: DIT basiert auf einer überwiegend linearen Beschreibung der Dynamik, was bei realen Systemen oft unzureichend ist.
- Statische Gewichtungen: Die Gewichtungsfaktoren (α_i, β_i) sind zeitunabhängig und berücksichtigen nicht die Dynamik von Parametern.
- Skalare Größen: DIT beschreibt die Zustände (A(t)) meist durch skalare Größen, wodurch mehrdimensionale Effekte wie Tensorverbindungen oder Wechselwirkungen übersehen werden.
- Rückkopplungen: Rückkopplungen werden nur rudimentär modelliert, was emergente Phänomene wie Selbstorganisation oder Phasenübergänge schwer erklärbar macht.

2. Erweiterungen in ADIT

2.1 Tensorverbindungen statt skalare Zustände

DIT verwendet skalare Zustände (A(t)) und gewichtete Summen von Einflüssen. ADIT ersetzt diese durch Tensorverbindungen (T_{ij}) :

- Tensoren erlauben es, mehrdimensionale Zustände und Wechselwirkungen darzustellen.
- Ein Beispiel wäre die Beschreibung eines Systems durch Energie-, Impulsund Felderverteilungen in mehreren Dimensionen.

Die Gleichung wird von:

$$A(t) = \sum_{i=1}^{n} (\alpha_i I_i(t) + \beta_i E_i(t))$$

zu:

$$\frac{d^2 T_{ij}}{dt^2} + \gamma \frac{d T_{ij}}{dt} + \omega_0^2 T_{ij} = F_{ij}(t) + H_{ij}(T) + G_{ij}(T).$$

2.2 Dynamische Gewichtungen $(\alpha(t), \beta(t))$

In ADIT sind die Gewichtungen dynamisch und hängen von Zeit oder Zuständen ab:

$$\alpha_i = \alpha_i(t, T_{ij}), \quad \beta_i = \beta_i(t, T_{ij}).$$

Dies ermöglicht die Modellierung adaptiver Systeme, z. B. neuronaler Netze oder sozialer Strukturen, bei denen die Wechselwirkungen zeitabhängig sind.

2.3 Nichtlineare Rückkopplungen

ADIT integriert nichtlineare Rückkopplungstherme $(H_{ij}(T))$ und Schwellenwertbedingungen $(G_{ij}(T))$:

$$H_{ij}(T) = \kappa_H \sum_{k,l} T_{kl}^2,$$

$$G_{ij}(T) = \begin{cases} -\alpha (T_{ij} - T_{\min}) & \text{wenn } T_{ij} < T_{\min}, \\ +\beta (T_{ij} - T_{\max}) & \text{wenn } T_{ij} > T_{\max}. \end{cases}$$

2.4 Multidimensionale Wechselwirkungen

In DIT werden Wechselwirkungen als einfache Summen dargestellt. ADIT erweitert dies durch Tensorprodukte und Kreuzkopplungen:

$$\sum_{j,k} \kappa_{jk} T_{ij} T_{kl}.$$

2.5 Integration von externen Einflüssen

Externe Einflüsse $(F_{ij}(t))$ werden in ADIT erweitert, um:

- Quantenfluktuationen (F_Q) ,
- zeitabhängige Dunkle Energie (F_{Λ}) ,
- und andere dynamische Einflüsse zu modellieren.

Ein Beispiel:

$$F_{ij}(t) = F_Q + F_{\Lambda} + F_{\text{externe Einflüsse}}.$$

3. Methodik zur Erweiterung

3.1 Mathematische Generalisierung

ADIT ersetzt die einfachen algebraischen Terme von DIT durch Differentialgleichungen zweiter Ordnung. Diese beschreiben die Dynamik, Stabilität und Wechselwirkungen genauer.

3.2 Einsatz von Tensoralgebra

Die Erweiterung von skalaren Zuständen (A(t)) auf Tensoren (T_{ij}) ermöglicht es, komplexe multidimensionale Wechselwirkungen zu modellieren.

3.3 Integration von Schwellenwerten und Emergenz

ADIT berücksichtigt Phänomene wie Selbstorganisation und Phasenübergänge durch nichtlineare Rückkopplungen und Schwellenwertbedingungen.